Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Parasitology ; : 1-12, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616408

ABSTRACT

Trypanosomatids are obligate parasites of animals, predominantly insects and vertebrates, and flowering plants. Monoxenous species, representing the vast majority of trypanosomatid diversity, develop in a single host, whereas dixenous species cycle between two hosts, of which primarily insect serves as a vector. To explore in-depth the diversity of insect trypanosomatids including their co-infections, sequence profiling of their 18S rRNA gene was used for true bugs (Hemiptera; 18% infection rate) and flies (Diptera; 10%) in Cuba. Out of 48 species (molecular operational taxonomic units) belonging to the genera Vickermania (16 spp.), Blastocrithidia (7), Obscuromonas (4), Phytomonas (5), Leptomonas/Crithidia (5), Herpetomonas (5), Wallacemonas (2), Kentomonas (1), Angomonas (1) and two unnamed genera (1 + 1), 38 species have been encountered for the first time. The detected Wallacemonas and Angomonas species constitute the most basal lineages of their respective genera, while Vickermania emerged as the most diverse group. The finding of Leptomonas seymouri, which is known to rarely infect humans, confirms that Dysdercus bugs are its natural hosts. A clear association of Phytomonas with the heteropteran family Pentatomidae hints at its narrow host association with the insect rather than plant hosts. With a focus on multiple infections of a single fly host, using deep Nanopore sequencing of 18S rRNA, we have identified co-infections with up to 8 trypanosomatid species. The fly midgut was usually occupied by several Vickermania species, while Herpetomonas and/or Kentomonas species prevailed in the hindgut. Metabarcoding was instrumental for analysing extensive co-infections and also allowed the identification of trypanosomatid lineages and genera.

2.
Microorganisms ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38674697

ABSTRACT

In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain's proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 µg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain's adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites.

3.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38348908

ABSTRACT

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Subject(s)
Bacillus subtilis , Bacterial Proteins , DNA-Directed RNA Polymerases , Mycobacterium tuberculosis , RNA, Bacterial , Sigma Factor , Sigma Factor/metabolism , Sigma Factor/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/enzymology , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Gene Expression Regulation, Bacterial , Nucleic Acid Conformation , Transcription, Genetic , RNA, Untranslated
4.
Sci Rep ; 14(1): 1421, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228735

ABSTRACT

Diagnosis of SARS-CoV-2 virus is mainly based on direct detection. Determination of specific antibodies has been used mostly for epidemiological reasons. However, select immunoassays showed good correlation to plaque reduction virus neutralization test (PRNT) in smaller patient cohorts, which suggests their potential as predictors of virus neutralization titer. A total of 3,699 samples from Covid-19 patients were included in the multicentric study performed in the Czech Republic. Anti-SARS-CoV-2 antibody levels were evaluated by 8 commercial antibody assays. Simultaneously, PRNT evaluations were performed with the SARS-CoV-2 B.1.258 variant. All immunoassays showed an overall high true positive diagnostic value ranging from 79.17 to 98.04%. Several commercial EIA methods showed highly positive correlation between the assay results and PRNT levels, e.g., Liaison CoV-2 TrimericS IgG DiaSorin (Spearman r = 0.8833; Architect SASRS-CoV-2 IgG Abbott (r = 0.7298); NovaLisa SARS-CoV-2 IgG NovaTec (r = 0.7103) and Anti-SARS-CoV-2 ELISA IgG Euroimmun (r = 0.7094). While this correlation was less positive for other assays, those, conversely, presented higher true positive values. For most immunoassays, the positive percent agreement of the results was ≥ 95% in sera exhibiting PRNT levels of 1:80 and higher. The assays tested have shown variable correlation to PRNT. Those possessing high positive predictive values serve well as qualitative tests, while others can be utilised as quantitative tests highly predictive of neutralization antibody levels.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Serologic Tests/methods , Sensitivity and Specificity , Antibodies, Viral , Immunoglobulin G , Neutralization Tests/methods , Antibodies, Neutralizing
5.
Front Microbiol ; 14: 1289671, 2023.
Article in English | MEDLINE | ID: mdl-38033559

ABSTRACT

Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov. We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena. Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.

6.
Nat Commun ; 14(1): 4579, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37516764

ABSTRACT

The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.


Subject(s)
Songbirds , Animals , Songbirds/genetics , Open Reading Frames , Biological Evolution , Germ Cells , Chromosomes
7.
Article in English | MEDLINE | ID: mdl-36748542

ABSTRACT

An actinobacterial strain, designated A5X3R13T, was isolated from a compost soil suspension supplemented with extracellular material from a Micrococcus luteus-culture supernatant. The strain was cultured on tenfold-diluted reasoner's 2A agar. The cells were ovoid-to-rod shaped, non-motile, Gram-stain-positive, oxidase-negative, catalase-positive and had a width of 0.5 µm and a length of 0.8-1.2 µm. The results of both 16S rRNA-based phylogenetic and whole-genome analyses indicate that A5X3R13T forms a distinct lineage within the family Nocardioidaceae (order Propionibacteriales). On the basis of the 16S rRNA gene sequence, A5X3R13T was closely related to Aeromicrobium terrae CC-CFT486T (96.2 %), Nocardioides iriomotensis IR27-S3T (96.2 %), Nocardioides guangzhouensis 130T (95.6 %), Marmoricola caldifontis YIM 730233T (95.5 %), Aeromicrobium alkaliterrae KSL-107T (95.4 %), Aeromicrobium choanae 9H-4T (95.4 %), Aeromicrobium panaciterrae Gsoil 161T (95.3 %), and Nocardioides jensenii NBRC 14755T (95.2 %). The genome had a length of 4 915 757 bp, and its DNA G+C content was 68.5 mol %. The main fatty acids were 10-methyl C17 : 0, C16 : 0, C15 : 0, C18 : 0, C17 : 0 and iso-C16 : 0. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. MK-9(H4) was the predominant respiratory quinone. The peptidoglycan type was A3γ (A41.1) and contained alanine, glycine, glutamic acid and ll-diaminopimelic acid in a molar ratio of 1.2 : 0.9 : 1.0 : 0.8. On the basis of the results of the phylogenetic and phenotypic analyses and comparisons with other members of the family Nocardioidaceae, strain A5X3R13T is proposed to represent a novel species within a novel genus, for which the name Solicola gregarius gen. nov., sp. nov. is proposed. The type strain is A5X3R13T (=DSM 112953T=NCCB 100840T).


Subject(s)
Actinomycetales , Fatty Acids , Fatty Acids/chemistry , Micrococcus luteus , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Phospholipids/analysis , Soil Microbiology
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36256564

ABSTRACT

An aerobic, Gram-stain-positive and non-spore-forming strain, designated C1-1T, was isolated from a fellfield soil sample collected from frost-sorted polygons on Jane Col, Signy Island, Maritime Antarctic. Cells with a size of 0.65-0.9×1.2-1.7 µm have a flagellar motile apparatus and exhibit a rod-coccus growth cycle. Optimal growth conditions were observed at 15-20 °C, pH 7.0 and NaCl concentration up to 0.5 % (w/v) in the medium. The 16S rRNA gene sequence of C1-1T showed the highest pairwise similarity of 98.77 % to Arthrobacter glacialis NBRC 113092T. Phylogenetic trees based on the 16S rRNA and whole-genome sequences revealed that strain C1-1T belongs to the genus Arthrobacter and is most closely related to members of the 'Arthrobacter psychrolactophilus group'. The G+C content of genomic DNA was 58.95 mol%. The original and orthologous average nucleotide identities between strain C1-1T and A. glacialis NBRC 113092T were 77.15 % and 77.38 %, respectively. The digital DNA-DNA relatedness values between strain C1-1T and A. glacialis NBRC 113092T was 21.6 %. The polar lipid profile was composed mainly of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. The predominant cellular fatty acids were anteiso-C15 : 0 (75 %) and anteiso-C17 : 0 (15.2 %). Menaquinone MK-9(H2) (86.4 %) was the major respiratory quinone in strain C1-1T. The peptidoglycan type was determined as A3α (l-Lys-l-Ala3; A11.6). Based on all described phylogenetic, physiological and chemotaxonomic characteristics, we propose that strain C1-1T (=DSM 112353T=CCM 9148T) is the type strain of a novel species Arthrobacter polaris sp. nov.


Subject(s)
Arthrobacter , Micrococcaceae , RNA, Ribosomal, 16S/genetics , Peptidoglycan/chemistry , Phylogeny , Base Composition , Soil , Vitamin K 2/chemistry , Sodium Chloride , Cardiolipins , Antarctic Regions , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Sequence Analysis, DNA , Phospholipids/chemistry , Nucleic Acid Hybridization , Glycolipids/chemistry , Phosphatidylinositols , Nucleotides
9.
Ticks Tick Borne Dis ; 13(6): 102042, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126494

ABSTRACT

Borrelia miyamotoi, a relapsing fever spirochete, is considered a human pathogen. Knowledge of this borrelia is currently limited. Data about its potential impact on public health, circulation in nature, or its occurrence in natural environments are insufficient. For our study, a total of 505 questing Ixodes ricinus ticks (337 nymphs, 85 females and 83 males) from Hradec Králové Region in the Czech Republic were collected. Additionally, 160 winged Lipoptena deer keds from Hradec Králové Region, from Pardubice Region, Czech Republic, and from one location in western Slovakia were collected. The presence of B. miyamotoi in ticks and deer keds was determined using polymerase chain reaction (PCR) targeting a gene encoding glycerophosphodiester phosphodiesterase (glpQ), antigenic protein specific to the relapsing fever spirochetes. Borrelia miyamotoi was identified in six nymphs and four females of I. ricinus ticks. The overall prevalence was 2%. None of the examined Lipoptena specimens were found to be infected. Although no human case of infection with B. miyamotoi has been reported in the Czech Republic yet, this spirochete is widespread in ticks, and therefore the risk of human infection exists.

10.
Environ Microbiome ; 17(1): 48, 2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36089611

ABSTRACT

BACKGROUND: The extreme conditions of thermal springs constitute a unique aquatic habitat characterized by low nutrient contents and the absence of human impacts on the microbial community composition. Thus, these springs may host phylogenetically novel microorganisms with potential use in biotechnology. With this hypothesis in mind, we examined the microbial composition of four thermal springs of the world-renowned spa town of Karlovy Vary (Carlsbad), Czechia, which differ in their temperature and chemical composition. RESULTS: Microbial profiling using 16S rRNA gene sequencing revealed the presence of phylogenetically novel taxa at various taxonomic levels, spanning from genera to phyla. Many sequences belonged to novel classes within the phyla Hydrothermae, Altiarchaeota, Verrucomicrobia, and TA06. Cultivation-based methods employing oligotrophic media resulted in the isolation of 44 unique bacterial isolates. These include strains that withstand concentrations of up to 12% NaClw/v in cultivation media or survive a temperature of 100 °C, as well as hitherto uncultured bacterial species belonging to the genera Thermomonas, Paenibacillus, and Cellulomonas. These isolates harbored stress response genes that allow them to thrive in the extreme environment of thermal springs. CONCLUSIONS: Our study is the first to analyze the overall microbial community composition of the renowned Karlovy Vary thermal springs. We provide insight into yet another level of uniqueness of these springs. In addition to their unique health benefits and cultural significance, we demonstrate that these springs harbor phylogenetically distinct microorganisms with unusual life strategies. Our findings open up avenues for future research with the promise of a deeper understanding of the metabolic potential of these microorganisms.

11.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016395

ABSTRACT

Herein, we present our findings of an early appearance of the Monkeypox virus in Prague, Czech Republic. A retrospective analysis of biological samples, carried out on the 28th of April, revealed a previously unrecognized case of Monkeypox virus (MPxV) infection. Subsequent data analysis confirmed that the virus strain belongs to the ongoing outbreak. Combined with clinical and epidemiological investigations, we extended the roots of the current outbreak at least back to 16th of April, 2022.


Subject(s)
Mpox (monkeypox) , Czech Republic/epidemiology , Disease Outbreaks , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus , Retrospective Studies
12.
Microbiol Spectr ; 10(5): e0199522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36000901

ABSTRACT

Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.


Subject(s)
Radium , Radon , Uranium , Humans , Adolescent , Phylogeny , Water , Hydrogen Peroxide , Silver , Vitamin K 3 , Bacteria , Sulfur
13.
Article in English | MEDLINE | ID: mdl-35930468

ABSTRACT

An orange-golden iridescent culture, designated A1X5R2T, was isolated from a compost soil suspension which was amended with Micrococcus luteus NCTC 2665T culture supernatant. The cells were non-motile, Gram-stain-negative, 0.4-0.5 µm wide and 0.7-1.4 µm long. The 16S rRNA-based phylogenetic and whole-genome analyses revealed that strain A1X5R2T forms a distinct lineage within the family Sphingosinicellaceae and is closely related to members of the genus Sphingoaurantiacus (S. capsulatus, 93.04 % similarity, and S. polygranulatus, 92.77 %). The organism grew at 22-47 °C (optimal at 37 °C), salinity <3 % (optimal at 1.5 %) and at pH 7. The major respiratory quinone was ubiquinone-10, but a small quantity of ubiquinone-9 was also detected The major polyamine was homospermidine, but a small quantity of putrescine was also detected. The strain contained C18  :  1ω7c, C16 : 0, C16 : 1 ω7c and C18 : 0 as the major fatty acids. The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, sphingoglycolipid, diphosphatidylglycerol, two unidentified phospholipids and three unidentified amino lipids. The DNA G+C content was 64.9 mol%. According to the results of phylogenetic and phylogenomic analyses, as well as its physiological characteristics, strain A2X5R2T represents the type species of a novel genus within the family Sphingosinicellaceae. The name Pedomonas mirosovicensis gen. nov., sp. nov. is proposed, with the type strain being A1X5R2T (=NCCB 100839T=DSM 112829T).


Subject(s)
Alphaproteobacteria , Micrococcus luteus , Alphaproteobacteria/genetics , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Soil Microbiology , Ubiquinone/chemistry
14.
Folia Microbiol (Praha) ; 67(1): 121-127, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34590203

ABSTRACT

The isolation of Planococcus glaciei (designed strain CNCTC 7660) from blood of a patient with appendicitis is reported. Species P. glaciei (type strain CGMCC 1.6846 T) was for the first time identified as an environmental bacterium acquired from a glacier in China in 2009. To reveal the identity of the isolate CNCTC 7660, the 16S rDNA sequencing and the whole genome sequencing (Illumina MiSeq, Oxford Nanopore) were performed. The level of 16S rDNA gene sequencing similarity between CNCTC 7660 and CGMCC 1.6846 T was 99.55%. Phylogenetic analysis and average nucleotide analysis (ANI) based on the whole genome sequencing confirmed that the isolate CNCTC 7660 and CGMCC1.6846 T had ANI value above the taxonomic threshold for belonging to the same species (95%). The G + C content of CNCTC 7660 DNA was 46.8% (mol/mol). Except for the growth temperature, strains CGMCC1.6846 T and CNCTC 7660 were distinguished also biochemically. Due to the lack of information about the pathogenicity of P. glaciei, the possibility that it exerts pathogenicity in persons is suggested. But for understanding the nature of this species, further cases are needed.


Subject(s)
Fatty Acids , Bacterial Typing Techniques , Czech Republic , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Sci Rep ; 11(1): 20924, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686753

ABSTRACT

The patatin-like phospholipase domain containing 3 (PNPLA3) gene (viz. its I148M variant) is one of the key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We have identified a novel insertion/deletion variant of 1114 bp, localized in the second intron of the PNPLA3 gene, which corresponds to the 3' terminal sequence of the long-interspersed element (LINE-1). DNA analysis of 122 NAFLD patients and 167 control subjects as well as RNA analysis of 19 liver biopsies revealed that the novel variant is very common (frequency = 0.41), fully linked to the clinically important I148M variant, and clinically silent. Although the LINE-1 insertion does not seem to have any biological effect, it can impede genotyping of the I148M variant. If insertion prevents the attachment of the diagnostic primer, then the non-insertion allele will be selectively amplified; and thus the frequency of the 148M "risk" allele will be significantly overestimated due to the complete linkage of the LINE-1 insertion and the 148I allele of the PNPLA3 gene. Therefore, our findings underline the importance of careful design and consistent documentation of the methodology, including primer sequences. Critical revisions of the results of some studies that have already been reported may therefore be needed.


Subject(s)
Acyltransferases/genetics , Long Interspersed Nucleotide Elements/genetics , Non-alcoholic Fatty Liver Disease/genetics , Phospholipases A2, Calcium-Independent/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Genetic Predisposition to Disease/genetics , Genotype , Humans , Liver/pathology
18.
Prague Med Rep ; 122(2): 96-105, 2021.
Article in English | MEDLINE | ID: mdl-34137685

ABSTRACT

In our study we present an overview of the use of Oxford Nanopore Technologies (ONT) sequencing technology on the background of Enteric fever. Unlike traditional methods (e.g., qPCR, serological tests), the nanopore sequencing technology enables virtually real-time data generation and highly accurate pathogen identification and characterization. Blood cultures were obtained from a 48-year-old female patient suffering from a high fever, headache and diarrhea. Nevertheless, both the initial serological tests and stool culture appeared to be negative. Therefore, the bacterial isolate from blood culture was used for nanopore sequencing (ONT). This technique in combination with subsequent bioinformatic analyses allowed for prompt identification of the disease-causative agent as Salmonella enterica subsp. enterica serovar Paratyphi A. The National Reference Laboratory for Salmonella (NIPH) independently reported this isolate also as serovar Paratyphi A on the basis of results of biochemical and agglutination tests. Therefore, our results are in concordance with certified standards. Furthermore, the data enabled us to assess some basic questions concerning the comparative genomics, i.e., to describe whether the isolated strain differs from the formerly published ones or not. Quite surprisingly, these results indicate that we have detected a novel and so far, unknown variety of this bacteria.


Subject(s)
Nanopore Sequencing , Typhoid Fever , Female , Humans , Middle Aged , Salmonella , Salmonella paratyphi A/genetics
19.
G3 (Bethesda) ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33693598

ABSTRACT

Certain industrial chemicals accumulate in the environment due to their recalcitrant properties. Bioremediation uses the capability of some environmental bacteria to break down these chemicals and attenuate the pollution. One such bacterial strain, designated Pvy, was isolated from sediment samples from a lagoon in Romania located near an oil refinery due to its capacity to degrade dibenzofuran (DF). The genome sequence of the Pvy strain was obtained using an Oxford Nanopore MiniION platform. According to the consensus 16S rRNA gene sequence that was compiled from six 16S rRNA gene copies contained in the genome and orthologous average nucleotide identity (OrthoANI) calculation, the Pvy strain was identified as Pseudomonas veronii, which confirmed the identification obtained with the aid of MALDI-TOF mass spectrometry and MALDI BioTyper. The genome was analyzed with respect to enzymes responsible for the overall biodegradative versatility of the strain. The Pvy strain was able to derive carbon from naphthalene (NP) and several aromatic compounds of natural origin, including salicylic, protocatechuic, p-hydroxybenzoic, trans-cinnamic, vanillic, and indoleacetic acids or vanillin, and was shown to degrade but not utilize DF. In total seven loci were found in the Pvy genome, which enables the strain to participate in the degradation of these aromatic compounds. Our experimental data also indicate that the transcription of the NP-dioxygenase α-subunit gene (ndoB), carried by the plasmid of the Pvy strain, is inducible by DF. These features make the Pvy strain a potential candidate for various bioremediation applications.


Subject(s)
Dibenzofurans , Genomics , Biodegradation, Environmental , Pseudomonas , RNA, Ribosomal, 16S
20.
Int J Oncol ; 58(2): 238-250, 2021 02.
Article in English | MEDLINE | ID: mdl-33491750

ABSTRACT

Chronic myeloid leukemia (CML) is a malignant hematopoietic disorder distinguished by the presence of a BCR­ABL1 fused oncogene with constitutive kinase activity. Targeted CML therapy by specific tyrosine kinase inhibitors (TKIs) leads to a marked improvement in the survival of the patients and their quality of life. However, the development of resistance to TKIs remains a critical issue for a subset of patients. The most common cause of resistance are numerous point mutations in the BCR­ABL1 gene, followed by less common mutations and multiple mutation-independent mechanisms. Recently, exosomes, which are extracellular vesicles excreted from normal and tumor cells, have been associated with drug resistance and cancer progression. The aim of the present study was to characterize the exosomes released by imatinib­resistant K562 (K562IR) cells. The K562IR­derived exosomes were internalized by imatinib­sensitive K562 cells, which thereby increased their survival in the presence of 2 µM imatinib. The exosomal cargo was subsequently analyzed to identify resistance­associated markers using a deep label­free quantification proteomic analysis. There were >3,000 exosomal proteins identified of which, 35 were found to be differentially expressed. From this, a total of 3, namely the membrane proteins, interferon­induced transmembrane protein 3, CD146 and CD36, were markedly upregulated in the exosomes derived from the K562IR cells, and exhibited surface localization. The upregulation of these proteins was verified in the K562IR exosomes, and also in the K562IR cells. Using flow cytometric analysis, it was possible to further demonstrate the potential of CD146 as a cell surface marker associated with imatinib resistance in K562 cells. Taken together, these results suggested that exosomes and their respective candidate surface proteins could be potential diagnostic markers of TKI drug resistance in CML therapy.


Subject(s)
Exosomes/metabolism , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , CD146 Antigen/metabolism , CD36 Antigens/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Exosomes/drug effects , Fusion Proteins, bcr-abl/genetics , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...